

Alert | Energy & Natural Resources

July 2023

Mexico Changes Methodology for Calculating Fuel-Free Energy in Electric Power Cogeneration Systems

Read in Spanish/Leer en Español.

On May 26, 2023, the Energy Regulatory Commission (CRE) published agreement No. A/018/2023 in the Official Gazette of the Federation (DOF), updating the reference values of the methodologies for calculating electric power cogeneration system efficiency and the criteria for determining efficient cogeneration, as well as the criteria for efficiency and methodology of calculating the percentage of fuel-free energy established in the resolutions RES/003/2011, RES/206/2014, /RES/291/2012, and RES/1838/2016 (the "Agreement"), which took effect May 27, 2023.

The below tables compare the relevant changes made by the Agreement to each of the resolutions.

I. RES/206/2014

The Agreement modifies Section 1 of the methodology for calculating the efficiency of electric energy cogeneration systems and the criteria for determining efficient cogeneration.

Modifications	RES/206/2014	A/018/2023
Section 1 – Reach and		1.1.V. Contribute to the rational and sustainable transition
Objectives		of current energy, industrial, technological, and economic
		systems that rely on based on the transformation of
		nonrenewable energy resources, towards another energy
		system based on the sustainable use of electric energy.
Implementation of		2.0. Cogeneration: generation of electric energy produced
new definitions		in conjunction with steam or another secondary thermal
		energy, or both; when the thermal energy not used in the
		processes is used for the direct or indirect production of
		electric energy or when fuels produced in its processes are
		used for the direct or indirect generation of electric energy
		and provided that, in either case:
		a) The electricity generated is used to satisfy the
		needs of establishments associated with
		cogeneration, provided that the energy and
		economic efficiency of the entire process increases
		and that the process produces more electric energy
		than conventional generation plants. The permit
		holder may not be the operator of the processes
		that give rise to the cogeneration.
		b) The applicant must make surplus electricity
		available to the Federal Electricity Commission,
		pursuant to the terms of Article 36-Bis of the Public
		Electricity Service Law.
		2.1 Bis. Fuel-free energy (ELC): Electric energy that falls
		under the definition of "clean energy," according to the
		current methodologies.

II. RES/291/2012

The Agreement modifies the sixteenth and eighteenth provisions of the general provisions for accrediting efficient cogeneration systems.

Modifications	RES/291/2012	A/018/2023
Changes to Chapter	Sixteenth. The General Provisions	Sixteenth. The systems referred to in the
IV, "Procedures for	discussed in this Resolution note in the sixth	preceding provision are considered efficient as
the measurement of	provision that permit holders with	long as they do not use an additional fossil fuel
variables for the	cogeneration systems that are either under	for the generation of electric energy.
evaluation of	construction or about to begin production	Authorized persons must evaluate the
cogeneration	fall into the "efficient cogeneration" category,	cogeneration system to verify, among other
systems".	as long as they comply with the requirements	things, that the cogeneration process uses
New definitions.	established in this document. The Model	thermal energy to generate electricity. If
	Interconnection Agreement will be modified	additional fuel consumption is observed during
	to include the above provisions.	such evaluation, this must be recorded in the
		corresponding technical report.
	Eighteenth. In compliance with the	Eighteenth. The systems referred to in the
	provisions of Article 69-H of the Federal Law	preceding provision are considered efficient as
	of Administrative Procedure, published on	

Modifications	RES/291/2012	A/018/2023
	March 8, 2012, this Commission, through the	long as they do not use an additional fossil fuel
	Office of the Secretary of Energy, submitted	for the generation of electric energy.
	to the Federal Commission for Regulatory	Authorized persons must verify that in the
	Improvement (COFEMER) the Regulatory	cogeneration process, fuels not necessarily
	Impact Statement (MIR) corresponding to	produced via the same cogeneration process are
	the preliminary draft of this Resolution.	used for the generation of electric energy. If
		additional fuel consumption is observed during
		the evaluation of the cogeneration system, this
		must be recorded in the corresponding technica
		report.

III. RES/1838/2016

The Agreement modifies the general administrative provisions containing the efficiency criteria and establishing the calculation methodology to determine the percentage of fuel-free energy in energy sources and electric power generation processes.

Modifications	RES/1838/2016	A/018/2023
Changes to Case VI of		Case IV. Plants using auxiliary cooling
the Reach of Chapter		technology to improve the thermal efficiency of
Ι		the compressor-turbine ratio.
Changes to Chapter 4	 4.1 Scope. This case will apply to clean generators and distributed clean generation, as established in the Guidelines and the Electric Industry Law (LIE), whose power plants are in operation and which use fossil fuels and clean energy, to determine their percentage of fuel-free energy. This case is applicable, by way of example but not limitation, to the energy generated by sugar mills that comply with the efficiency criteria established by the CRE and emissions criteria established by the Ministry of the Environment and Natural Resources. 	Although the scope of Chapter 4 remains in force as established in RES/1838/2016, the Agreement adds the following condition: It is applicable to electric generation with two or more thermodynamic cycles sequenced for the maximum use of the residual thermal energy of its main cycle that comply with the efficiency criteria established by the CRE
		In Section 4.4, the Agreement adds that electric energy is considered "clean" if it is generated from fuel-free energy provided by one or several lower sequential thermodynamic cycles that take advantage of the residual heat of a thermal machine in a main thermodynamic cycle which uses natural gas or cleaner fuels, without using any additional or supplementary fossil fuel. The section establishes different variables used to calculate elements such as the electrical efficiency of the generation package. Section 4.4 also establishes the necessary conditions for power plants that use natural

Modifications	RES/1838/2016	A/018/2023
		gas or cleaner fuels and have lower sequential
		cycles to be considered "clean" energy.
Addition of Chapter		The case referred to in Chapter 8 applies to
8, "Case VI. Power		power plant units that use auxiliary cooling to
plants that use		condition the air entering the thermodynamic
auxiliary cooling		cycle, which complies with the efficiency
technology to		criteria established by the CRE.
improve the thermal		
efficiency of the		The Agreement establishes variables and
compressor-turbine		equations to determine the fuel-free energy of
ratio."		power plant units that use auxiliary cooling
		technologies, differentiating between auxiliary
		cooling technologies based on evaporative
		cooling and power plant units with non-
		evaporative external auxiliary cooling.

Conclusion

According to the newly established conditions, combined cycle power plants are considered clean energy sources. However, the Energy Transition Law (LTE) states that "electricity generation through combined cycle plants may not be considered as efficient generation."

This redefinition, which grants combined cycle plants the status of clean energy, allows power plants to enter the Clean Energy Certificates market, which aims to serve as a tool to measure progress towards an energy transition to renewables and Mexico's decarbonization. Likewise, the reconceptualization of what constitutes clean energy expands the amount of fuel-free energy in the country's energy matrix, but it does so by using fossil fuel sources, and therefore does not strictly comply with the requirements established for an energy transition.

Thus, by considering combined cycle plants as clean energy plants, the CRE intends to promote compliance with its environmental goals to counteract the effects of climate change. These goals are national and international in scope. On the one hand, the LTE states that by 2024, Mexico will generate 35% of its electricity from renewable sources. On the other hand, via the Paris Agreement, Mexico has committed to the international community to reduce its greenhouse gas emissions by 22% by 2030. However, by 2022, the share of clean energy in the country's energy matrix was 27% short of its 32% target.

* This GT Alert does not apply to matters or laws in the United States, nor to other jurisdictions outside of Mexico.

Authors

This GT Alert was prepared by:

- Erick Hernández Gallego | +52 55.5029.0060 | ehernandez@gtlaw.com
- Luis Jorge Akle | +52 55.5029.0061 | aklearrontej@gtlaw.com
- Paula Maria De Uriarte ~ | Law Clerk | Mexico City
- Alejandra García Corominas 🎽 | Summer Associate | Mexico City

[~] Not admitted to the practice of law.

Albany. Amsterdam. Atlanta. Austin. Berlin.¬ Boston. Charlotte. Chicago. Dallas. Delaware. Denver. Fort Lauderdale. Houston. Las Vegas. London.* Long Island. Los Angeles. Mexico City.+ Miami. Milan.» Minneapolis. New Jersey. New York. Northern Virginia. Orange County. Orlando. Philadelphia. Phoenix. Portland. Sacramento. Salt Lake City. San Diego. San Francisco. Seoul.∞ Shanghai. Silicon Valley. Singapore.= Tallahassee. Tampa. Tel Aviv.^ Tokyo.× Warsaw.~ Washington, D.C.. West Palm Beach. Westchester County.

This Greenberg Traurig Alert is issued for informational purposes only and is not intended to be construed or used as general legal advice nor as a solicitation of any type. Please contact the author(s) or your Greenberg Traurig contact if you have questions regarding the currency of this information. The hiring of a lawyer is an important decision. Before you decide, ask for written information about the lawyer's legal qualifications and experience. Greenberg Traurig is a service mark and trade name of Greenberg Traurig, LLP and Greenberg Traurig, P.A. ¬Greenberg Traurig's Berlin office is operated by Greenberg Traurig Germany, an affiliate of Greenberg Traurig, P.A. and Greenberg Traurig, LLP. *Operates as a separate UK registered legal entity. +Greenberg Traurig's Mexico City office is operated by Greenberg Traurig, S.C., an affiliate of Greenberg Traurig, P.A. and Greenberg Traurig, LLP. »Greenberg Traurig's Milan office is operated by Greenberg Traurig Santa Maria, an affiliate of Greenberg Traurig, P.A. and Greenberg Traurig, LLP. ∞Operates as Greenberg Traurig LLP Foreign Legal Consultant Office. =Greenberg Traurig's Singapore office is operated by Greenberg Traurig Singapore LLP which is licensed as a foreign law practice in Singapore. ^Greenberg Traurig's Tel Aviv office is a branch of Greenberg Traurig, P.A., Florida, USA. ¤Greenberg Traurig's Tokyo Office is operated by GT Tokyo Horitsu Jimusho and Greenberg Traurig Gaikokuhojimubengoshi Jimusho, affiliates of Greenberg Traurig, P.A. and Greenberg Traurig, LLP. ~Greenberg Traurig's Warsaw office is operated by GREENBERG TRAURIG Nowakowska-Zimoch Wysokiński sp.k., an affiliate of Greenberg Traurig, P.A. and Greenberg Traurig, LLP. Certain partners in GREENBERG TRAURIG Nowakowska-Zimoch Wysokiński sp.k. are also shareholders in Greenberg Traurig, P.A. Images in this advertisement do not depict Greenberg Traurig attorneys, clients, staff or facilities. No aspect of this advertisement has been approved by the Supreme Court of New Jersey. ©2023 Greenberg Traurig, LLP. All rights reserved.